Transition and Damping of Collective Modes in a Trapped Fermi Gas between BCS and Unitary Limits near the Phase Transition
نویسندگان
چکیده
We investigate the transition and damping of low-energy collective modes in a trapped unitary Fermi gas by solving the Boltzmann-Vlasov kinetic equation in a scaled form, which is combined with both the T-matrix fluctuation theory in normal phase and the mean-field theory in order phase. In order to connect the microscopic and kinetic descriptions of many-body Feshbach scattering, we adopt a phenomenological two-fluid physical approach, and derive the coupling constants in the order phase. By solving the Boltzmann-Vlasov steady-state equation in a variational form, we calculate two viscous relaxation rates with the collision probabilities of fermion's scattering including fermions in the normal fluid and fermion pairs in the superfluid. Additionally, by considering the pairing and depairing of fermions, we get results of the frequency and damping of collective modes versus temperature and s-wave scattering length. Our theoretical results are in a remarkable agreement with the experimental data, particularly for the sharp transition between collisionless and hydrodynamic behaviour and strong damping between BCS and unitary limits near the phase transition. The sharp transition originates from the maximum of viscous relaxation rate caused by fermion-fermion pair collision at the phase transition point when the fermion depair, while the strong damping due to the fast varying of the frequency of collective modes from BCS limit to unitary limit.
منابع مشابه
Collective modes in a unitary Fermi gas across the superfluid phase transition.
We provide a joint theoretical and experimental investigation of the temperature dependence of the collective oscillations of first sound nature exhibited by a highly elongated harmonically trapped Fermi gas at unitarity, including the region below the critical temperature for superfluidity. Differently from the lowest axial breathing mode, the hydrodynamic frequencies of the higher-nodal excit...
متن کاملFinite-temperature collective dynamics of a Fermi gas in the BEC-BCS crossover.
We report on experimental studies on the collective behavior of a strongly interacting Fermi gas with tunable interactions and variable temperature. A scissors mode excitation in an elliptical trap is used to characterize the dynamics of the quantum gas in terms of hydrodynamic or near-collisionless behavior. We obtain a crossover phase diagram for collisional properties, showing a large region...
متن کاملDamping of a unitary Fermi gas.
We measure the temperature dependence of the radial breathing mode in an optically trapped, unitary Fermi gas of 6Li, just above the center of a broad Feshbach resonance. The damping rate reveals a clear change in behavior which we interpret as arising from a superfluid transition. We suggest pair breaking as a mechanism for an increase in the damping rate which occurs at temperatures well abov...
متن کاملCollective oscillations of a trapped fermi gas near the unitary limit.
We calculate the oscillation frequencies of trapped Fermi condensate with particular emphasis on the equation of state of the interacting Fermi system. We confirm Stringari's finding that the frequencies are independent of the interaction in the unitary limit, and we extend the theory away from that limit, where the interaction does affect the frequencies of the compressional modes only.
متن کاملSuperfluid transition temperature in a trapped gas of Fermi atoms with a Feshbach resonance
We investigate strong coupling effects on the superfluid phase transition in a gas of Fermi atoms with a Feshbach resonance. The Feshbach resonance describes a composite quasi-Boson, which can give rise to an additional pair-ing interaction between the Fermi atoms. This attractive interaction becomes stronger as the threshold energy (2ν) of the Feshbach resonance two-particle bound state is low...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015